The role of L1 in axon pathfinding and fasciculation.
نویسندگان
چکیده
The neural cell adhesion molecule L1 has been found to play important roles in axon growth and fasciculation. Our main objective was to determine the role of L1 during the development of connections between thalamus and cortex. We find that thalamocortical and corticothalamic axons in mice lacking L1 are hyperfasciculated, a subset of thalamocortical axons make pathfinding errors and thalamocortical axon growth cones are abnormally long in the subplate. These defects occur despite formation of six cortical layers and formation of topographically appropriate thalamocortical connections. The loss of L1 is accompanied by loss of expression of ankyrin-B, an intracellular L1 binding partner, suggesting that L1 is involved in the regulation of Ank2 stability. We postulate that the pathfinding errors, growth cone abnormalities and hyperfasciculation of axons following loss of L1 reflect both a shift in binding partners among axons and different substrates and a loss of appropriate interactions with the cytoskeleton.
منابع مشابه
Development/Plasticity/Repair Semaphorin3D Regulates Axon–Axon Interactions by Modulating Levels of L1 Cell Adhesion Molecule
The decision of a growing axon to selectively fasciculate with and defasciculate from other axons is critical for axon pathfinding and target innervation. Fasciculation can be regulated by cell adhesion molecules that modulate interaxonal adhesion and repulsive molecules, expressed by surrounding tissues that channel axons together. Here we describe crosstalk between molecules that mediate thes...
متن کاملSemaphorin3D regulates axon axon interactions by modulating levels of L1 cell adhesion molecule.
The decision of a growing axon to selectively fasciculate with and defasciculate from other axons is critical for axon pathfinding and target innervation. Fasciculation can be regulated by cell adhesion molecules that modulate interaxonal adhesion and repulsive molecules, expressed by surrounding tissues that channel axons together. Here we describe crosstalk between molecules that mediate thes...
متن کاملActivation of EGF receptor kinase by L1-mediated homophilic cell interactions.
Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulati...
متن کاملMatrix metalloproteinases promote motor axon fasciculation in the Drosophila embryo.
Matrix metalloproteinases (MMPs) are a large conserved family of extracellular proteases, a number of which are expressed during neuronal development and upregulated in nervous system diseases. Primarily on the basis of studies using pharmaceutical inhibitors, MMPs have been proposed to degrade the extracellular matrix to allow growth cone advance during development and hence play largely permi...
متن کاملIncreasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons.
Rhythmic spontaneous bursting activity, which occurs in many developing neural circuits, has been considered to be important for the refinement of neural projections but not for early pathfinding decisions. However, the precise frequency of bursting activity differentially affects the two major pathfinding decisions made by chick lumbosacral motoneurons. Moderate slowing of burst frequency was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2004